Detection and Attribution of Climate Change, Including Extremes Presented by #### Tom Knutson #### Understanding Internal Variability and Forced Change - Detection and attribution of climate change, including extremes (T. Knutson). - Understanding Atlantic multidecadal variability (AMV), AMOC, and Arctic sea ice (R. Zhang) - ENSO predictability and dynamics (A. Wittenberg) - Simulating regional hydroclimate variability and change on decadal scales (T. Delworth) #### Motivations for detection and attribution studies #### Detection / Attribution: - Brings together observations, models, and analysis → synergies - Confronting models with observations → learning - If past changes detected/attributed → enhanced confidence in projections - Enhanced monitoring e.g., BAMS articles on explaining past year's extremes from a climate perspective. - NOAA Five-Year R&D Plan (2013-2017) - "Over the next 5 years, NOAA aims to: - Assess the roles of natural variability...and changing radiative forcing in causing observed seasonal-to-multidecadal scale changes in the climate system...Assess climate-induced changes in tropical and extratropical cyclones..." ### Tropical Cyclones and Climate Change #### IPCC AR5 WG2 Summary for Policymakers [Table SPM-1 Statements related to TCs and climate change] #### Phenomenon: - Increase in intense tropical cyclone activity #### Assessment that changes occurred: - Low confidence in long-term (centennial) changes - Virtually certain in North Atlantic since 1970 #### <u>Assessment of a human contribution to observed changes:</u> - Low confidence - "There is medium confidence that a reduction in aerosol forcing over the North Atlantic has contributed at least in part in the observed increase in tropical cyclone activity since the 1970s in this region." #### <u>Likelihood of further changes (late 21st century):</u> - More likely than not (Western North Pacific and N. Atlantic) #### Low confidence in long-term (centennial-scale) changes in TCs Sources: Vecchi and Knutson, J. Climate (2011); Landsea, Vecchi, Bengtsson, Knutson. J. Climate (2010). #### What caused the rise in Atlantic hurricane activity since the 1970s? Booth et al. (2012) attribute North Atlantic multidecadal SST variations primarily to aerosol forcing. Villarini and Vecchi (2013) attribute part of the multidecadal 'lull' in Atlantic hurricanes (70s and 80s) to aerosol forcing. Sources: Left: Fig. 1 adapted from Booth et al., Nature, 2012 (Zhang et al. JAS, 2013); right: Villarini and Vecchi (J. Climate 2013). #### Global temperature attribution analysis: CMIP5 7-model ensemble Source: Knutson, Zeng, and Wittenberg, J. Climate (2013) #### 1901-2010 Regional Surface Temperature Trend Assessment #### Surface temperature seasonal- or annual-mean extremes for 2013 ## Australia 2013 annual warmth: Risk attributable to anthropogenic forcing #### Australia Region: Annual Temperatures Ratio = $\frac{p_{ALL}}{p_{NAT}}$ Source: Knutson, Wittenberg, and Zeng, BAMS, submitted. Beginning Year of Trend (All Trends Ending in 2013) #### 2013 Annual-mean Precipitation Extremes: Attribution is Difficult ### Are CMIP5 model simulations consistent with the global warming 'hiatus'? Maybe... #### Potential sources of inconsistency: - Forcing issues - Response to forcings - Underestimated internal variability - Observation issues Source: Knutson, Zeng, and Wittenberg: in preparation #### Impact of missing temperature observations on the warming hiatus? Source: Realclimate.org (Rahmsdorf, Nov. 13, 2013, after Cowtan and Way, QJRMS, 2014.). ## Are CMIP5 model simulations consistent with the global warming 'hiatus'? Maybe... 2003 2002 Source: Knutson, Zeng, and Wittenberg: in preparation 1999 2000 Start Year (all trends ending in 2012) 2001 1998 1997 ### Summary - No detectable centennial-scale increases in tropical cyclone activity. Medium confidence in some contribution of reduced aerosol forcing to the increase in Atlantic hurricane activity since the 1970s. [Future work: modeled changes] - Anthropogenic influence on surface temperature is detectable even at the grid-point scale in many regions. [Future work: heat stress, drought/precip] - Extreme event attribution (using CMIP5 models): [Future work: new events] - Temperatures: Australia region (extreme annual means, 2013) increased risk of such an event is fully attributable to anthropogenic forcing according to the CMIP5 models - Precipitation: Northern U.S. region (extreme annual means, 2013) – increasing trend partly attributable to anthropogenic + natural forcing - The "global warming hiatus": [Future work: causes of the hiatus] - CMIP5 historical runs/RCP4.5 are inconsistent with observed trends since 1997 or 1998 (data-available regions). - Observational coverage may affect this conclusion for the global domain.